If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-14n=52
We move all terms to the left:
n^2-14n-(52)=0
a = 1; b = -14; c = -52;
Δ = b2-4ac
Δ = -142-4·1·(-52)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{101}}{2*1}=\frac{14-2\sqrt{101}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{101}}{2*1}=\frac{14+2\sqrt{101}}{2} $
| 20=5/5d | | y-(-14)=26 | | 3p/4=8 | | -v/6=-58 | | 30t+25=-20t+1000 | | 32+6x=10x | | 7x+6=-7x+20 | | 7y+11=6 | | -6x-10-7x=29 | | (3x+15)+(3x+15)=112 | | x+9-7x=-63 | | -3t-15+4t-2=8 | | 18=-3x+4x+9 | | -29=-4x+7x+4 | | 6-6x-4x=-74 | | z2+16z–17=0 | | 3d2+19d+6=0 | | n^2+14n-49=-7 | | 5x+2=9x+18 | | 0=12x^2+x-1 | | 3(x=6)=42 | | 23=-3q-7 | | 4u+12=58 | | -24=8(r-8) | | q-43=41 | | u/2-3=-4 | | 15=j-39 | | -10(y+3)=80 | | 930=30u | | -78=7z+6z | | z/26=22 | | 1.1x+4.3=0.3×-0.9 |